BooksAI 对比 Typeset
在 BooksAI 和 Typeset 的对决中,哪个 AI Summarizer 工具脱颖而出?我们评估评论、定价、替代品、功能、赞成票等等。
当我们把 BooksAI 和 Typeset 放在一起时,哪一个会成为胜利者?
让我们仔细看看BooksAI和Typeset,两者都是AI驱动的summarizer工具,看看它们有什么不同。 在赞成票的竞赛中,Typeset获得了奖杯。 Typeset有 25 个赞成票,而 BooksAI 有 6 个赞成票。
您不同意结果?投票帮助我们决定!
BooksAI

什么是 BooksAI?
使用Booksai发现一个知识世界,其中AI生成的书籍摘要在单个消化页面中解锁了复杂概念的本质。 Booksai非常适合狂热的读者和知识者,提供了超过4000万个摘要,量身定制,以满足您的好奇心。无论您是想扩大自己的智力还是找到下一篇阅读,我们的AI建议都会指导您带来与您的兴趣共鸣的书籍。体验大创意使咬人大小,并用书籍找到您的文学指南针。立即在App Store或Google Play上下载该应用程序,然后将自己沉浸在更智能的阅读过程中。
Typeset

什么是 Typeset?
您的平台探索和解释论文。搜索270m+的论文,以简单的语言了解它们,然后查找连接的论文,作者,主题。
BooksAI 赞同数
6
Typeset 赞同数
25🏆
BooksAI 顶级功能
内容丰富的图书馆: 访问超过 4000 万本人工智能生成的图书摘要。
人工智能推荐: 接收个性化的书籍推荐。
简明摘要: 将伟大的想法压缩成一口大小的页面。
用户友好的应用程序: 可在 App Store 和 Google Play 上下载。
富有洞察力的发现: 读者可以轻松理解的功能和概念。
Typeset 顶级功能
未列出顶级功能BooksAI 类别
- Summarizer
Typeset 类别
- Summarizer
BooksAI 定价类型
- Freemium
Typeset 定价类型
- Free
BooksAI 标签
Book Summaries
AI Recommendations
Knowledge Expansion
Reading Journey
App Download
Typeset 标签
Content Summary
AI Whitepapers
AI Emails
BooksAI 平均评分
无可用评分Typeset 平均评分
4.00
BooksAI 评论
无可用评论Typeset 评论
Sara Sara
The simulation model validated experimental J-V and external quantum efficiency (EQE) to demonstrate an improvement in perovskite (PSK) solar cell (PSC) efficiency. The effect of interface properties at the electron transport layer (ETL)/PSK and PSK/hole transport layer (HTL) was investigated using the Solar Cell Capacitance Simulator (SCAPS). The interfaces between ETL, PSK, and HTL were identified as critical factors in determining high open-circuit voltage (Voc) and FF. In this study, the impact of two types of interfaces, ETL/PSK and PSK/HTL, were investigated. Lowering the defect density at both interfaces to 102 cm−2 reduced interface recombination and increased Voc and FF.The absorber layer defect density and n/i interface of perovskite solar cells were investigated using the Solar Cell Capacitance Simulator-1D (SCAPS-1D) at various cell thicknesses. The planar p-i-n structure was defined as PEDOT:PSS/Perovskite/CdS, and its performance was calculated. With a defect density of <1014 cm−3 and an absorber layer thickness of >400 nm, power conversion efficiency can exceed 25%. The study assumed a 0.6 eV Gaussian defect energy level beneath the perovskite's conduction band, which has a characteristic energy of 0.1 eV. These conditions produced the same result on the n/i interface. These findings place constraints on numerical simulations of the correlation between defect mechanism and performance