GLaM 对比 ChatGPT Plugins
深入比较 GLaM 和 ChatGPT Plugins,发现哪个 AI Large Language Model (LLM) 工具脱颖而出。我们检查替代品、赞成票、功能、评论、定价等等。
在 GLaM 和 ChatGPT Plugins 的比较中,哪一个脱颖而出?
当我们比较GLaM和ChatGPT Plugins时,两个都是AI驱动的large language model (llm)工具,并将它们并排放置时,会发现几个关键的相似之处和不同之处。 社区已经发表了意见,ChatGPT Plugins以更多的赞成票领先。 ChatGPT Plugins已经获得了 15 个 aitools.fyi 用户的赞成票,而 GLaM 已经获得了 6 个赞成票。
想改变局面?投票支持您最喜欢的工具,改变游戏!
GLaM

什么是 GLaM?
题为“GLaM:专家混合的语言模型的高效扩展”的论文提出了一种新的语言模型开发方法,可以提高效率和性能。 GPT-3 等传统密集模型通过扩展大型数据集和提高计算能力,在自然语言处理 (NLP) 方面取得了突破。然而,这种扩展的资源成本很高。
提出的 GLaM 模型通过引入稀疏激活的专家混合架构来解决这个问题。这使得 GLaM 能够拥有更多的参数——1.2 万亿,大约是 GPT-3 的 7 倍——同时减少训练和推理所需的能量需求和计算量。值得注意的是,GLaM 在 29 个 NLP 任务中的零样本和一次性学习方面也优于 GPT-3,这标志着在寻求更高效、更强大的语言模型方面向前迈出了一步。
ChatGPT Plugins

什么是 ChatGPT Plugins?
Openai遵循迭代的部署理念,作为这种方法的一部分,它正在逐渐发布Chatgpt插件。此逐步发布的目的是研究插件的实际使用,评估其影响,并确定可能出现的任何安全性和一致性挑战。正确实现这些方面的正确性是至关重要的。
自CHATGPT推出以来,用户表示有兴趣访问插件,许多开发人员正在尝试类似的想法。 OpenAI最初是将插件推向一小部分用户,并计划在学习更多信息时逐渐增加访问权限。经过Alpha期之后,想要将插件集成到其产品中的API用户也将可以访问。 Openai很高兴建立一个将有助于塑造人类互动范式的未来的社区。
邀请候补名单的开发人员可以使用OpenAI的文档来构建用于Chatgpt的插件。创建插件后,它将在语言模型显示的提示符中列出,以及指示如何使用每个模型的文档。第一组插件是由Expedia,Fiscalnote,Instacart,Kayak,Klarna,Milo,Opentable,Opentable,Shopify,Slack,Speak,Wolfram和Zapier创建的。
GLaM 赞同数
ChatGPT Plugins 赞同数
GLaM 顶级功能
大模型容量: GLaM 模型拥有 1.2 万亿个参数。
提高效率: 与 GPT-3 相比,训练 GLaM 仅消耗三分之一的能量。
减少计算要求: GLaM 需要一半的计算失败来进行推理。
出色的性能: GLaM 在零样本和单样本学习任务中实现了更好的整体性能。
创新架构: GLaM 采用稀疏激活的专家混合框架。
ChatGPT Plugins 顶级功能
实时信息访问:插件使 ChatGPT 能够访问最新信息,使其更加有用和信息丰富。
计算能力:直接在聊天中执行计算或运行代码片段,增强解决问题的能力。
第三方服务交互:与 Expedia、FiscalNote 或 Instacart 等服务交互,扩大 ChatGPT 可以协助的任务范围。
社区建设:OpenAI 旨在建立一个开发者和用户社区,通过插件塑造人机交互的未来。
逐步推出:采用谨慎的推出方法来研究现实世界的使用、影响和安全性,确保负责任地部署这一新功能。
GLaM 类别
- Large Language Model (LLM)
ChatGPT Plugins 类别
- Large Language Model (LLM)
GLaM 定价类型
- Free
ChatGPT Plugins 定价类型
- Freemium