Drag Your GAN

Drag Your GAN

Dans le domaine de la synthèse de contenu visuel pour répondre aux besoins des utilisateurs, il est essentiel d'obtenir un contrôle précis sur la pose, la forme, l'expression et la disposition des objets générés. Les approches traditionnelles de contrôle des réseaux adverses génératifs (GAN) reposaient sur des annotations manuelles lors de la formation ou sur des modèles 3D préalables, manquant souvent de la flexibilité, de la précision et de la polyvalence requises pour diverses applications.

Dans notre recherche, nous explorons une méthode innovante et relativement inexplorée pour le contrôle du GAN : la possibilité de « faire glisser » des points d'image spécifiques pour atteindre avec précision des points cibles définis par l'utilisateur de manière interactive (comme illustré sur la figure 1). Cette approche a conduit au développement de DragGAN, un nouveau framework comprenant deux composants principaux :

Supervision de mouvement basée sur les fonctionnalités : ce composant guide les points de poignée dans l'image vers leurs positions cibles prévues grâce à une supervision de mouvement basée sur les fonctionnalités.

Suivi des points : tirant parti des fonctionnalités discriminantes du GAN, notre nouvelle technique de suivi des points localise en permanence la position des points de poignée.

DragGAN permet aux utilisateurs de déformer les images avec une précision remarquable, permettant ainsi la manipulation de la pose, de la forme, de l'expression et de la disposition dans diverses catégories telles que les animaux, les voitures, les humains, les paysages, etc. Ces manipulations ont lieu au sein de la variété d'images génératives apprises d'un GAN, ce qui donne des résultats réalistes, même dans des scénarios complexes tels que la génération de contenu occlus et la déformation de formes tout en adhérant à la rigidité de l'objet.

Nos évaluations complètes, comprenant des comparaisons qualitatives et quantitatives, mettent en évidence la supériorité de DragGAN sur les méthodes existantes dans les tâches liées à la manipulation d'images et au suivi de points. De plus, nous démontrons ses capacités à manipuler des images du monde réel via l'inversion GAN, démontrant ainsi son potentiel pour diverses applications pratiques dans le domaine de la synthèse et du contrôle de contenu visuel.

Tarification:

Gratuit

Tags:

GANs
Feature-based motion supervision
Point tracking
Image synthesis
Visual content manipulation
Image deformations
Realistic outputs
Machine learning research
Computer vision
Image processing
GAN inversion

Technologie utilisée:

GANs
Debian

Commentaires:

Give your opinion on Drag Your GAN :-

Overall rating

Join thousands of AI enthusiasts in the World of AI!

Meilleur Gratuit Drag Your GAN Alternatives (et Payées)

By Rishit